Schubert Calculus is tool to solve some algebraic geometric problems
Egg.

Bore: $H^{*}\left(F l_{n}, \mathbb{C}\right) \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$

$$
I_{n}=\left\langle e_{i}\left(x_{1}, \ldots, x_{n}\right) \quad i=1, \ldots, n\right\rangle
$$

elementary sym. poly

$$
e_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j_{1}<\ldots<j_{i}} x_{j i} \cdots x_{j i}
$$

Ex $(n=3)$ consider coinucriant algebra

$$
\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1}, x_{2} x_{3}\right\rangle
$$

Linear Basis	$\operatorname{deg} 0$	1		1
	$\operatorname{deg} 1$	x_{1}	x_{2}	2
	$\operatorname{deg} 2$	$x_{1} x_{2}$	x_{1}^{2}	2
	$\operatorname{deg} 3$	$x_{1} x_{2}^{2}$		1.

So total dimension is 6

Lemma All monomials $x^{a}=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ such that such that $0 \leq a_{i} \leq n-i$ for $i=1, \ldots, n$ form a basis of coinuariant algebra

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{n}
$$

Bernstein_Gelfand-Gelfand
defined divided difference operators

$$
\partial_{i} f=\frac{1}{x_{i}-x_{i+1}}\left(1-s_{i}\right) f
$$

more generally, if $\omega=s_{i_{1}} \cdots S_{i e}$ is a reduced decomposition, then

$$
\partial_{\omega}=\partial_{i_{1}} \cdots \partial_{i e}
$$

They showed that Schubert basis is given by $\partial w^{-1} \omega_{0}(f)$ for almost any f of degree $\binom{n}{2}$.

Lascoux-Schitzenberger
Schubert Polynomials

$$
S_{w}=\partial \omega^{-1} \omega_{0}\left(x_{1}^{n-1} \cdots x_{n}^{0}\right)
$$

Properties
(1) $\left\{S_{w}, w \in S_{n}\right\} \bmod I_{n}$ is the linear basis of coinuariant algebra

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{n}
$$

given by Schur classes (BGG)
(2) (non-negativity) Sw have non-neg. integer coefficients.
(3) (Stability) $S_{n} \longrightarrow S_{n+1}$

$$
w=w_{1} \cdots w_{n} \longrightarrow \widetilde{w}=w_{1} \cdots w_{n}(n+1)
$$

Then $S_{w}\left(x_{1}, \ldots, x_{n}\right)=S_{w}\left(x_{1}, \ldots, x_{n+1}\right)$

Last time we saw two definitions of Schur Polynomials
(A) Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $0 \leqslant k \leqslant n$

$$
S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)=S_{\omega(\lambda)}=\partial_{\omega(\lambda)^{-1} \omega_{0}}\left(x^{\delta}\right)
$$

(B)

$$
\begin{aligned}
& \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \\
& S_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\partial_{\omega_{0}}\left(x^{\lambda+\delta}\right)
\end{aligned}
$$

Question: How to show that $(A) \Leftrightarrow(B)$?
Ans: $x^{\lambda+\delta}=S_{u}$ for $u \in S_{m}$ for some $m>n$ and use stability.

This raises the following question:
Question: how to see that a monomial is Schubert

Theorem Any monomial $x^{\lambda}=x_{1}^{\lambda_{1}} \ldots x_{n}^{\lambda^{h}}$ such that
(1) x^{λ} divides x^{δ}
(2) $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$
is a Schubert polynomial S_{ω} for some $w \in S_{n}$ ζ \# \& such monomials equal to catalo e_{n}

Question: when is $\partial_{i}\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}\right)=$ monomial

$$
\partial_{i}\left(x_{i}^{a} x_{i+1}^{b}\right)= \begin{cases}0 & \text { if } a=b \\ x_{i}^{a-1} x^{b}+\cdots+x_{i}^{b} x_{i+1}^{a-1} & \text { if } a>b \\ -\left(x_{i}^{b-1} x_{i+1}^{a}+\cdots+x_{i}^{a} x_{i+1}^{b-1}\right) & \text { if } a<b\end{cases}
$$

Ans: $\quad \alpha_{i}=\alpha_{i+1}+1$

Claim if we only allow such ∂_{i} we will get all Schubert monomial
proof: induction in a $\binom{n}{2}-|\lambda|$

If $\lambda \neq \delta$ then we cor always find i st.

$$
\lambda_{i}=\lambda_{i+1}
$$

we can add a box and apply induction hypotlesis-an μ. Then $\partial_{i}: x^{\mu} \rightarrow x^{\lambda}$.

